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A VARIATIONAL APPROACH FOR THE STUDY OF
OUTDOOR SOUND PROPAGATION AND

APPLICATION TO RAILWAY NOISE
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A boundary element program for the study of 2D acoustical problems is presented. It
uses a variational approach leading to symmetric matrices after discretization. Numerical
optimization enables the study of complex situations, such as screens placed near trains,
for the full frequency range of interest, at reasonable cost. The ground effect is included
in the Green function. Post-treatments offer means of introducing point or incoherent line
sources. Several applications to the cases of screens placed near trains are given.
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1. INTRODUCTION

The study of outdoor sound propagation may involve different levels of complexity such
as long distance effects, complex obstacles eventually absorbent, meteorological effects.
Geometrical approaches may deal with complex ground profiles and multiple reflections
provided that no close effects prevail. Simple formulae [1] such as the now classical
Maekawa model have proved efficient for straight screens. The geometrical theory of
diffraction [2] can deal with more complex situations but will fail, for instance, to predict
the effect of an absorbent material placed on top of a T-shaped screen. Complex ground
profiles may be introduced. Meteorological effects have been studied with various
approaches, as for instance with the parabolic equation method [3].

So various methods may be used depending on the problem. If the main concern is the
optimization of noise barriers, precise results are required and finite element techniques
are well known for their accuracy provided that one is ready to pay for the usually high
computation times and that one is interested only in the low frequencies. The boundary
element method (BEM) appears well suited for outdoor sound propagation since it leads
to the discretization of surfaces only, and includes the conditions of sound radiation at
infinity. Furthermore, if the ground is assumed infinite, flat and of constant admittance,
its discretization can be avoided, provided that the elementary solution includes the
reflection by the ground [4].

In this paper, a boundary element formalism is presented [5–8]. A variational approach
is used which leads to symmetric matrices after discretization. The developments are made
for 2D situations, which offer the great advantage of permitting the study of the full audio
frequency range. Recent works by Duhamel [10, 11] extended the method to 3D situations
where the geometry remains infinite along one dimension but with the possibility of
including point or infinite incoherent line sources which are closer to real traffic sources.
Several applications are reported for different shapes of screens, alone or in the near field
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of trains. 3D applications are presented and the efficiencies of screens are compared for
infinite line sources, either coherent or incoherent.

2. THE INTEGRAL REPRESENTATION

Figure 1 shows the geometry of the problem which remains constant along the y-axis.
The analysis is done for the harmonic time dependence e−ivt. E is an infinite coherent line
source which therefore appears as a point source in the 2D representation. The ground
L, along x, is flat, of infinite extent, and may be either rigid or of constant admittance
a. A and B are contours having an admittance Y different from a, A being on the ground.
A and B may be of variable admittance with position, n is the normal to the boundaries,
directed towards the fluid. The admittances are defined as ratios of displacement to
pressure, rather than velocity to pressure, thus avoiding i terms in the integral
representations.

The Green integral can be expressed as

P(M)=gS

P(Q)[rv2Y(Q)G(M, Q)− 1G(M, Q)/1nQ ] dS(Q)+ t(M), (1)

where P(M) is the acoustical pressure at any point M outside LQS (S=AQB). G(M, Q)
is the Green solution of the problem and it gives the elementary solution at any point M
when only the ground L is present in the case of a unit line source at any point Q. S0 is
the position of the line source, t(M) is the solution when only L is present, and r is the
fluid density.

The integral gives the total pressure radiated by the screen (A and B surfaces).
The expression for G is the sum of three terms [8]:

G(M, Q)=−(i/4)H0(kr)− (i/4)H0(kr−)+Pa (M, Q), (2)

where r is the (M, Q) distance, r− is the distance between M and the image of Q with
respect to L, and H0 is the Hankel function of the first kind and order zero. The second
term is the contribution of a hard floor, and Pa is the correction factor for ground
admittance:

Pa (M, Q)=
ib
2p g

a

−a

exp (ik[(yM + yQ )(1− s2)1/2 − (xM − xQ )s])
(1− s2)1/2[(1− s2)+ b]

ds, Re bq 0. (3)

Here b=ivrca, c is the speed of sound in the fluid, and Re (1− s2) and Im (1− s2)e 0.
The elementary solution G satisfies, by definition, on the plane z=0, the relation

1G(M, Q)/1nM = rv2aG(M, Q), M$L. (4)

Figure 1. Geometry of the problem: A (on the ground) and B (above the ground) are discretized.
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Therefore equation (1) can be decomposed into

P(M)=gA

P(Q)rv2(Y(Q)− a)G(M, Q) dS(Q)

+gB

P(Q)[rv2Y(Q)G(M, Q)− 1G(M, Q)/1nQ ] dS(Q)+ t(M). (5)

When M tends toward the boundaries, particular attention must be taken due to the
1G/1nQ term. If M is on A, equation (5) is still valid, but if M is on B the left side of
equation (5) must be multiplied by o(M) [12]. o(M) is the angle in the medium subtended
by the two tangents to the boundary at M, divide by 2p. When M is on a smooth part
of S, o(M)=1/2. In this expression, any integral containing a 1G/1nQ term must be taken
in the principal value sense (PV) (see the Appendix).

These integral expressions for the pressure on S can be directly used to solve the
problem, with a collocation scheme [4]. It consists in using a finite element discretization
technique of S into N points and in writing equation (5) at each nodal point. This leads
to a set of N linear equations, in terms of the pressures at the N points. The alternative
to such a straightforward application of equation (5) is the use of a variational approach.
This approach has already been used for acoustical problems [13, 14] or for vibroacoustical
situations [15, 16]. Unlike the variational approach described in reference [13], the
variational approach described in the next section leads to a symmetric linear system.

3. THE VARIATIONAL APPROACH

First one expresses 1P/1nM , when M is on S, as

(1/rv2)(1P(M)/1nM )=D(M)+C(M), (6)

where

D(M)=PV gA

P(Q)(Y(Q)− a)
1G(M, Q)

1nM
dS(Q)+PV gB

P(Q)Y(Q)
1G(M, Q)

1nM
dS (Q)

−FP gB

P(Q)
1

rv2 R(M, Q) dS(Q)+
1

rv2

1t(M)
1nM

, (7)

with

R(M, Q)= 12G(M, Q)/1nM1nQ

and

C(M)=6(Y(M)− a)2(1− o(M))P(M)= (Y(M)− a)P(M),

Y(M)(1− o(M))P(M),

M$A

M$B 7 . (8)

C(M) is obtained, when M tends towards Q on either A or B, as a limit contribution of
1G(M, Q)/1nM . The 1− o(M) factor is the result of an integration over an infinitely small
circular contour around Q on the surface. When M is on A, the Green function contributes
twice due to the image term. FP denotes the finite part of the integral which is divergent.
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The principal value PV is applied either on the A or on the B integral, depending on
whether M is on A or B. Since either on A or B, by definition of Y,

(1/rv2)1P(M)/1nM =Y(M)P(M), (9)

equation (6) with equations (8) and (9) leads to

aP(M)=D(M), M$A; Y(M)o(M)P(M)=D(M), M$B. (10, 11)

The functional is then built by taking successively the two expressions of equation (5)
written for M on A, then on B, and the two equations (10) and (11) obtained from the
expression for the normal derivative of the pressure on A and then on B. Each of these
four integral expressions is multiplied by a test function q associated to P and integrated
on A or B with respect to M. A more detailed calculation is given in the Appendix.
Summing these four double integrals leads to the functional

K(q, P)=T(q), (12)

where

K(q, P)= gg
A×A

Z11(M, Q)P(Q)q(M) dS(Q) dS(M)

+ gg
A×B

Z12(M, Q)P(Q)q(M) dS(Q) dS(M)

+ gg
B×A

Z21(M, Q)P(Q)q(M) dS(Q) dS(M)

+ gg
B×B

Z22(M, Q)P(Q)q(M) dS(Q) dS(M)

+g
A

(Y(M)− a)P(M)q(M) dS(M), (13)

Z11(M, Q)=−rv2(Y(M)− a)(Y(Q)− a)G(M, Q),

Z22(M, Q)=−rv2Y(M)Y(Q)G(M, Q)+Y(M)1G(M, Q)/1nQ

+Y(Q)1G(M, Q)/1nM −R(M, Q)/rv2,

Z12(M, Q)= (Y(M)− a)[1G(M, Q)/1nQ − rv2Y(Q)G(M, Q)], M$A, Q$B,

Z21(M, Q)= (Y(Q)− a)[1G(M, Q)/1nM − rv2Y(M)G(M, Q)], M$B, Q$A,

T(q)=gS

q(M)$Y(M)t(M)−
1

rv2

1t(M)
1nM % dS(M).
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The bilinear form K is symmetric since points M and Q may be interchanged. Therefore
K(q, P)=K(P, q) and the solution P of the problem is the stationary point of

F(P)= 1
2K(P, P)−T(P). (14)

In the previous expressions, the second integration takes care of the local values of o(M)
not equal to 1/2. The double integrations are all convergent, most especially the integrals
containing the double derivative R. The finite part of equation (7) due to R is suppressed
by the second integration.

The double integration with the R function can be expressed [17] in a different form more
convenient for numerical computation. If one recalls that G is the sum of two Hankel
functions plus a term Pa for the ground effect, the double derivative of each Hankel
function is transformed as

gg 12H0(M, Q)
1nM1nQ

P(M)P(Q) dS(Q) dS(M)=gg [k2P(M)P(Q)(nM , nQ )− (nQU9QP(Q),

nMU9MP(M))]H0(M, Q) dS(Q) dS(M), (15)

where nU9P can be written as dP/ ds, s being in the tangent direction to the surface [17].
The single and double derivatives of Pa are expressed as

1/1nM =(nM , 9M ), 12/1nM1nQ =(nM , 9M (nQ , 9Q )). (16)

Note that the transformation (15) cannot be applied to Pa since the equality
9MH0 =−9QH0 is not satisfied by Pa .

4. NUMERICAL IMPLEMENTATION

A finite element technique is used to discretize equation (14). Simple linear elements were
judged sufficient to discretize the contour S. Each double integral is written as a double
sum over the Ne elements:

s
Ne

i=1

s
Ne

j=1

�Pi�[Zij ]{Pj}. (17)

�� and {} are respectively line and column vectors.
The elementary matrices [Zij ] are computed with a classical Gauss double summation.

Values of three Gauss points were found to be sufficient. When i= j in equation (17) the
elementary integration cannot be done with a simple Gauss technique since it contains a
singular part due to the identity of Q and M. The singularity 2p log (kr) is subtracted from
the Green function and the integration is done normally. The singular part is integrated
analytically. The computation of the ground function Pa and of its derivative is done by
integrating equation (3) with simple Gauss–Laguerre summations as described in reference
[4]. Five points per integral were found to give enough precision in most cases.

The Hankel functions may be efficiently evaluated numerically but the time needed is
a significant part of the total time of construction of the matrix system. Storing 10 000
values for arguments between 0·001 and 200 and using interpolation whenever the
argument falls within this range has allowed reduction of computation times by more than
twenty for rigid ground without any reduction of precision.
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Figure 2. Comparions of the computation times. ——, P1 matrix: rigid ground and screen (H0 computed);
+––+, P2 matrix: as P1, H0 tabulated; *—*, P3 matrix: absorbent screen; w—w, P4 matrix: absorbent ground
and screen; - - - - - , P5 resolution time.

Significant reduction of time can be obtained by decomposing the matrix in the form:
v2A( f0)+B( f0)+C( f0)/v2. The A, B, C terms are computed only once, for a central
frequency f0 in a given frequency band. This remains valid as long as the main variations
come from the v2 terms.

Adaptive meshing is easily implemented for 2D contours and also gives very significant
reduction of computation times. The contour is defined as a succession of straight elements
or portions of circles. At each frequency, every segment is regularly subdivided into a given
number of elements per wavelength with a minimum number of elements imposed. Usually
values of three up to five elements per wavelength were found sufficient. The matrix system
is symmetric and it also contributes to reduce further the computation times. The
cumulative effect of these reductions of time in addition to the study of 2D problems with
the BEM technique, is that full size problems involving not only a screen but also the
profile of a train with its ballast is rendered possible.

The introduction of the effect of the ground in the Green function implies that, when
using equation (1), the computation time will be independent of the receiver position. The
computer program has been named MICADO which stands in French for Integral Method
for the Acoustical Computation of the Diffraction by Obstacles.

In order to provide an idea of the computation times, Figure 2 shows the times needed
on a HP 9000 C160 computer, as a function of the number of unknowns N. On this

Figure 3. Effect of ground admittance (s=300 kNsm−4). ——, MICADO; w, ground function.
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Figure 4. Absorbent barrier of semi-circular section (s=300 kNsm−4). ——, Analytical; *, MICADO; w,
Hothersall et al.

computer 1600 million multiplications can be performed in one second. Five different plots
are given. P1 to P4 represent the times necessary to compute the matrix and P5 is the
resolution time. P1 and P2 were obtained for a rigid problem either by computing or by
using the tabulated values of the Hankel functions. P3 corresponds to a fully absorbent
screen with rigid ground, whereas in P4 the ground becomes also absorbent. The time
needed to compute the matrices varies as the square of N and the time to solve the matrix
system varies as the third power of N. For very large discretization the total time may
therefore increase rapidly with frequency, but in practice this is seldom the case.

At 2000 Hz, the total time for a straight screen, 3 m high, meshed with three elements
per wavelength and one observation point is 0·8 s. It becomes 6·5 s if the ground is
absorbent. Adding the train profile of Figure 7 leads to 12 s if the ground is rigid and 69 s
for an absorbent ground.

5. SIMPLE CASES

The simple case of a source over an infinite ground of constant admittance is first
considered. The source and the receiving points (E, M) are 1 m apart, both 1 m above
ground. The admittance corresponds to a flow resistivity s of 300 kNsm−4 in the Delany

Figure 5. Pyramidal barrier, 3 m high, 12 m wide. ——, MICADO; w - - - w, Hothersall et al.
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Figure 6. Long distance effect of ground admittance (s=300 kNsm−4); insertion loss (IL) relative to IL for
hard ground at 500 Hz. ——, 0·1 m above ground; - - - - , 2 m above ground.

and Bazley model [18]. Figure 3 gives the level difference of pressure at M for absorbent
and hard grounds. The soft ground is modelled either by meshing the ground 40 m around
E, the rest of the floor being hard, or by using equations (2) and (3). The results are
identical, which validates the BEM program especially for elements on the ground.

Comparisons with results obtained in reference [9] with a collocation method are
presented in Figures 4 and 5. In Figure 4, the case of a barrier of semi-circular section
and radius 3 m is considered. The ground is hard and the barrier has an admittance given
by s=300 kNsm−4. The excess attenuation (free field pressure divided by pressure with
screen) is obtained for both source and receiver on the ground, so that no interference effect
is present. This problem has an analytical solution which has been given in reference [19].
The solution obtained with MICADO agrees perfectly with the exact solution whereas the
collocation solution shows errors at high frequencies. In Figure 5, a screen of triangular
shape with the same admittance is presented. Again some differences between MICADO
and the collocation solution of equation [9] can be seen. The occurrence of the so-called
‘‘irregular frequencies’’, corresponding to the resonance frequencies of the complementary
interior problem, is at the origin of the instabilities obtained with the collocation approach.
At such frequencies there is not a unique numerical solution of the problem [9]. The
variational approach, presented in this paper, does not seem to have this problem and this
has been checked numerically. Only poor meshing may lead to numerical imprecisions at
these frequencies. Using five elements per wavelength has been found sufficient to avoid
the problem in most cases.

Ground effect on long distance propagation is illustrated in Figure 6 by plotting the
difference of insertion loss (pressure without screen divided by pressure with screen) for
absorbent and hard ground (s=300 kNsm−4) behind a hard flat screen, 3·0 m high, for

Figure 7. General view of screen, train, ballast, source E and two receiver positions M1, M2.
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a receiver at z=0·1 of 2 m above the ground, at 500 Hz. The source is at z=1·5 m and
5 m in front of the screen. At 300 m, the insertion loss would be overestimated by 7 dB
if the absorption of the ground were not taken into account.

6. SCREENS NEAR TRAINS

Consider now the configuration of Figure 7, with the 2D section of a train on a ballast,
with a 3·05 m high screen placed 5·25 m away from the center of the train. E is a line source
close to the train, at position (1·5, 1·25). Two receiving points M1 and M2 are considered
at (15·25, 2·75) and (25·25, 4·25). The train is rigid. The ballast has an admittance
corresponding to s=100 kNsm−4 which is a simplified way of describing its behaviour.

Figure 8. (a) Different screens, 3·05 m high; S2, S3 are tilted by 26°, 1·97 m above ground; the two screens
of S4 are 3 m apart; the cylinders in S5 and S6 have a diameter of 0·5 m; S7, S8, S9 have a 1 m wide top; S8, S9

have a 0·5 m wide inflection at mid-height; (b) top view of S11 (‘‘calm zone’’ device) with co-ordinates according
to Figure 7.
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Figure 9. Power level of line source.

The absorptive coatings on the screens have a flow resistivity of s=30 kNsm−4 and a
thickness of 5 cm, corresponding to a mineral wool. Several screens are considered and
described in Figure 8. They all have the same total height of 3·05 m,, which is important
for comparison purposes. S0 denotes the case of the straight screen without treatment, and
it will be the reference situation. S2 and S3 are tilted towards the source. S4 is made of two
identical hard screens. S5 and S6 have a cylinder on top (diameter 0·5 m), hard in S5 and
absorbent in S6, S7 and S8 are T screens either hard or treated on the top. S9 and S10 are
sigma shaped screens with treatment either on the underside of on the upperside of the
top. S11 is a [calm zone\ type of screen [21]. The computations were done with twenty
frequencies per third-octave band. This was found necessary for convergence. Figure 9
shows the sound power of source E.

In Figure 10, the insertion losses of screens S0, S1, S8 and S10 (rigid and treated straight
screens, T and sigma screens treated on the top) at point M2, with the screen present and
the train absent are plotted. The ground is hard. S0 and S1 have very similar insertion losses
meaning that the treatment of the front side with a mineral wool is of small effect. S8 and
S10 also have similar losses, meaning that a T and a sigma screen of the same overall
dimensions and the same treatment on the top have similar effects without the train. These
remarks are no longer valid when the train and ballast are introduced, as it can be seen

Figure 10. Different screens, without train. ——, S0; w——w, S1; - - - - , S8; w - - - - w, S10.
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Figure 11. Different screens, with train. Key as for Figure 10.

in Figure 11. In this case treating the straight screen improves its efficiency significantly
since it reduces the standing waves between car and screen. Moreover, the sigma shape
further improves the T screen above 500 Hz, due also to the modification of the standing
wave pattern. It can therefore be concluded from these results, that comparing screens
placed near trains should not be done without modelling the profile of the train.

The values of attenuation terms of the A-weighted level (dB(A)), relative to the case of
a single hard screen, are listed in Table 1. Results at points M1 and M2 are reported for
hard or absorbent ground (s=600 kNsm−4) either with or without the train. The values
in parenthesis are for the point M2. The dB(A) values are obtained for the source spectrum
of Figure 9. This table shows the following: without the car, the absorbing material placed
on the vertical screen (S1) has little effect but with the car its efficiency is in the order of
4 or 5 dB(A); tilting the top (S2) has little effect, adding some absorption (S3) improves
the result; adding a second screen (S4) is efficient for points in the shadow zone; a rigid

T 1

Gains in dB(A) of different screens relative to the straight screen (S0); ground is either hard
or absorbent (s=600 kNsm−4); two receiving points M1 and (M2) either with or without the

train+ ballast. (Screens S0 to S11 defined in Figure 8)

No train With train
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Ground Hard Absorbent Hard Absorbent

S1 1·2 (1·0) 1·1 (0·9) 4·7 (5·2) 3·6 (3·9)
S2 2·3 (0·0) 1·7 (0) 0·7 (1·1) 1·0 (1·4)
S3 3·0 (0·7) 2·4 (0·6) 2·7 (2·8) 3·2 (4·5)
S4 7·0 (3·0) 6·7 (2·8) 4·5 (1·6) 4·6 (1·7)
S5 −1·4 (−1·9) −3·7 (−5·2) −2·8 (−2·0) −3·1 (−2·3)
S6 3·6 (2·8) 3·2 (2·4) 2·4 (1·8) 2·1 (1·4)
S7 2·3 (0·6) 1·8 (0·2) 1·8 (1·0) 1·5 (0·6)
S8 6·8 (5·0) 6·3 (4·6) 5·5 (4·0) 5·2 (3·5)
S9 2·6 (0·9) 2·1 (0·5) 4·5 (3·8) 3·9 (2·8)
S10 7·0 (5·1) 6·3 (4·6) 7·0 (5·4) 6·7 (4·8)
S11 5·1 (3·7) 4·6 (3·3) 1·9 (1·2) 1·7 (0·9)
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Figure 12. Excess attenuation at M1 (15, 3); coherent line source; ground (s=300 kNsm−4); three screens.
——, Straight; - - - - , rigid T; — - —, T with lining on top.

cylinder (S5) placed on the top of a screen degrades its efficiency whereas an absorbent
cylinder (S6) gives an improvement of the order of 1 to 2 dB(A); the T-shaped screen if
hard (S7) improves the straight screen by 1 or 2 dB(A), and by more than 4 dB(A) if treated
at the top (S8); the sigma shaped screen should be treated at its top (S10) and gives similar
results as a T screen of same overall dimensions if the train is not considered, but
introducing the train leads to even better results due to the broken shape of the screen
and putting treatment on the front side would further improve these results; the [calm
zone\ system (S11) gives improvements of the order of only 1 or 2 dB(A).

7. INFLUENCE OF SOURCE TYPE

It is interesting to see the influence of the type of source used in the model. The 2D
problem implies that the source is an infinite coherent line source. Recent works by
Duhamel [11] have shown that post-treating the 2D results via a Fourier type of transform,

Figure 13. Excess attenuation at M1 (15, 3); incoherent line source; ground (s=300 kNsm−4). Key as for
Figure 12.
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Figure 14. Effect of T top at M1 (15, 3); coherent (C) or incoherent (I) source; rigid (R) or absorbent (A) T
top; (s=30 kNsm−4). ——, C (R); w——w, C (A); - - - - , I (R); w - - - w, I (A).

gives the solution for a still infinite geometry but for either a point source, a combination
of point sources at any 3D points or for an infinite incoherent line source. The 2D problem
must be solved for real frequencies up to the 3D frequency of interest as well as for some
imaginary frequencies. When ground and obstacles are rigid, the same 2D spectrum serves
for all the 3D frequencies below the highest 2D frequency computed. When absorbent
surfaces are present (ground or obstacle), the 2D solution must be obtained for every 3D
frequency with a modified admittance spectrum. This extra-cost is negligible compared to
the time that full 3D computations would involve [11].

Figure 12 shows the excess attenuation of the straight rigid screen (S0), the rigid T screen
and the same T screen with mineral wool on the top (cases S7 and S8) in the case of a
coherent line source. The receiver is at (15, 3) and the ground has an impedance given by
s=300 kNsm−4. Figure 13 shows the same results for the incoherent line source, after
using the 3D transformation. In the second case, the attenuations are more regular and
of smaller amplitude at high frequencies than for the coherent source. Figure 13 was
obtained with one frequency per third octave band and due to the regularity of the curves

T 2

Excess attenuation in dB(A); three types of screens 2 points M3(15, 3),
M4(100, 4); (C, I) coherent or incoherent line sources; (R, A) rigid or
absobent ground; values in parentheses are relative to the straight screen

Straight T screen T treated

R C M3 16·8 17·9 (1·1) 22·4 (5·6)
M4 16·5 17·4 (0·9) 22·1 (5·6)

I M3 9·3 10·6 (1·3) 17·3 (8·0)
M4 8·6 9·7 (1·1) 15·4 (6·8)

A C M3 17·5 18·2 (0·7) 22·7 (5·2)
M4 16·4 17·1 (0·7) 21·1 (4·7)

I M3 13·1 14·8 (1·7) 20·2 (7·1)
M4 14·7 15·5 (0·8) 20·1 (5·4)
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Figure 15. Efficiency in dB(A) of a T screen, top absorbent (s=30 kNsm−4) referred to a straight hard screen;
thick lines are even values; absorbent ground (s=300 kNsm−4); coherent line source.

it seems sufficient. Results for the coherent line source were obtained with twenty
frequencies per third octave band.

Figure 14 compares at M3 (15, 3), the pressure levels for both T screens relative to the
straight screen and for either coherent (solid curve) or incoherent line sources (dashed
curves). Both types of sources give similar overall results. Again, the incoherent line source
gives much smoother results.

The excess attenuation values in dB(A) for the three types of screens and the two types
of sources, at point M3 and M4 (100, 4) are given in Table 2, both for rigid and absorbent
ground. Smaller attenuations are obtained for incoherent than for coherent line sources,
the difference being higher at M3, the point closer to the screen. Differences between
incoherent and coherent line sources are smaller with an absorbent ground. The efficiency
of an added absorption on the T top is higher for incoherent than for coherent sources
(8 versus 5·6 dB(A) at point M3 for a rigid ground, and 7·1 versus 5·2 dB(A) at point M3

Figure 16. Efficiency in dB(A) of a T screen, top absorbent (s=30 kNsm−4) referred to a straight hard screen;
thick lines are even values; absorbent ground (s=300 kNsm−4); incoherent line source.
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Figure 17. Effect of source type on the efficiency ET in dB(A) of the top of a T screen; ET incoherent–ET
coherent; ground (s=300 kNsm−4); thin lines are integer values.

for an absorbent ground). In general the treatment of the top of the T screen increases
its efficiency by more than 4 dB(A).

Figures 15 and 16 show, in the form of iso-contour plots, the gain in dB(A) on absorbent
ground of the T screen with treatment on the top, referenced to the straight hard screen,
first for the coherent then for the incoherent line source. Figure 17 shows the difference
between Figures 16 and 15, positive values indicating a higher efficiency of the absorbent
T top for an incoherent than for a coherent line source. The values are of the same order
of magnitude in both cases for the lower points, differences of 1 or 2 dB(A) may be found
at the highest positions.

Figure 18. Geometry of train, ballast, screens (a, b), sources (dipoles 1 to 7) and barrier.
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Figure 19. Separate powers of dipole sources. ——, Sleeper V; - - - -, rail V; w——w, rail H; w - - - -w,
wheel H.

In the case of an incoherent line source, the efficiency of the absorbent top has been
found to be about 1 dB(A) lower for the absorbent ground than for the hard ground, at
most points.

8. EFFECT OF LITTLE SCREENS CLOSE TO THE RAILS

The last case presented concerns the use of little screens placed near the rails. Figure
18 shows a view of the 2D profile of the bodywork of a train above ballast, a vertical
straight barrier, 2·15 m high, with mineral wool facing the train (s=30 kNsm−4,
thickness=5 cm) and two little screens near the rails. Whereas the train profile of Figure
7 corresponds to a TGV train, this profile is typical of more classical trains. The noise
radiated by the lower part of the car is modelled with seven dipoles. Three vertical dipoles
for the sleeper (E1), right (E2) and left (E5) rails and four horizontal dipoles for right (E3)
and left (E6) rails and right (E4) and left (E7) wheels. Figure 19 gives the separate
contributions of these sources, as given by the European Rail Research Institute [5, 6].

The sources are assumed to be totally incoherent. Therefore, each problem is solved
seven times and the sound power levels are summed in energy at all points of interest. It
should be noted that this does not involve a multiplication of the total computation time
by a factor of seven, since the resolution algorithm, based on a Cholevsky decomposition

T 3

Efficiency in dB(A) of small screens placed near the rails; three heights of screens: 55, 105,
155 mm above rail head

Receivers M1 M2 M3 M4 M5 M6 M7 M8 M9

Position 25, 5·65 25, 10 25, 14 50, 5·65 50, 20 50, 26 100, 5·65 100, 40 100, 50

Hard 55 mm −0·4 −0·3 +0·6 −0·2 −0·4 +0·3 0 −0·4 +0·1
screens 105 mm −0·5 −0·1 +1·2 −0·1 −0·1 +0·7 +0·1 −0·2 +0·6

155 mm −0·7 0 +1·5 −0·1 0 +1·0 −0·1 0 +0·7

Absorbent 55 mm +1·2 +1·5 +2·4 +1·3 +1·3 +2·0 +1·6 +1·3 +1·9
screens 105 mm +1·8 +2·3 +3·6 +1·9 +2·1 +3·0 +2·3 +2·1 +2·8

155 mm +2·3 +3·0 +4·7 +2·6 +2·8 +4·0 +2·8 +2·9 +3·7
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Figure 20. Efficiency of little screens at M4 (50, 5·65). ——, rigid screens; - - - - , absorbent screens.

[20], stores an intermediate decomposition of the matrix once for all and that the
back-substitution, different for the various sources, is a minor percentage of the total
resolution time. Consequently, dealing with seven sources only adds a few percent of
computation time compared to the case with only one source, provided that only a few
pressure points are wanted.

Nine receiving points are considered at 20, 45 and 95 m behind the screen and for every
distance at three different heights such that one is deep in the shadow zone (M1, M4, M7),
one is in the transition zone (M2, M5, M8) and one is in direct view from the sources
(M3, M6, M9). The exact positions with respect to Figure 18 are given in Table 3. Figure
20 compares the extra insertion loss due to the little screens at point M4 (45 m behind screen
and 5·65 m above ground) when these screens are either hard or covered with the same
mineral wool as the barrier. In this case the screens project 55 mm above the rails head.
One can notice that hard screens placed near the rails reduce the efficiency of pre-existent
barriers. If these screens are absorbent, a significant improvement can be obtained. At
100 Hz, the little screens degrade the results, even if they are treated. Figure 21 shows the
sound pressure level, referenced to point (2, 2), for a vertical dipole (source E2, right rail)
placed near a little screen. Instead of having a horizontal minimum, the radiation pattern
is strongly modified by the presence of the screen and leads to a horizontal maximum. This
has been found to be the reason for the overall degradation, when the contributions of
the seven sources are added. Finally Table 3 summarizes for the nine receiving positions
the efficiency in dB(A) of three heights of screens either hard or treated. These results
further enhance the efficiency of putting absorbent little screens near rails since between

Figure 21. Effect of screen on vertical dipole; source E2 (right rail) at 100 Hz; lines every 1·5 dB.
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1 and 4 dB(A) of noise reduction can be expected. Further calculations have shown that
1 or 2 more dB(A) of attenuation can be obtained by placing the same absorbent wool
(s=30 kNsm−4, thickness=5 m) under the car.

9. CONCLUSIONS

The application of boundary element methods to 2D situations enables the study of
complex situations for the full frequency range of interest. A variational approach has been
chosen since it leads to a symmetric matrix and provided that sufficient meshing is used,
the results are not affected by the problem of irregular frequencies. The introduction of
Green functions which include absorbent ground effects, contributes to the rapidity of the
computations. Recent works by Duhamel give a way to bypass the major drawback of 2D
approaches since they offer a mean of post-treating the 2D results to rapidly obtain
solutions for either point sources of incoherent line sources. The geometry remains infinite
but this is of minor importance due to the practical length of barriers placed near trains
or roads. Applications to railway problems fully show the capacities of the method as well
as the necessity of introducing the train profiles for assessing the efficiency of different
screens.
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APPENDIX: COMPUTATION OF THE FUNCTIONAL

The expressions for the pressure and its derivative when the point M is either on A or
on B are written for a smooth point, where o(M)=1/2. The influence of angular positions
is cancelled by the second integration.

When M$A, the pressure can be written as

P(M)−gA

P(Q)rv2(Y(Q)− a)G(M Q) dS(Q)

−gB

P(Q)$rv2Y(Q)G(M, Q)−
1G(M, Q)

1nQ % dS(Q)= t(M). (A1)

If M$B,

P(M)
2

−gA

P(Q)rv2(Y(Q)− a)G(M Q) dS(Q)

−gB

P(Q)$rv2Y(Q)G(M, Q)−
1G(M, Q)

1nQ % dS(Q)= t(M). (A2)

If M$A, equations (10), (7) and (4) lead to

gA

P(Q)(Y(Q)− a)rv2aG(M, Q) dS(Q)+gB

P(Q)Y(Q)rv2aG(M, Q) dS(Q)

−gB

P(Q)a
1G(M, Q)

1nQ
dS(Q)− aP(M)=−

1
rv2

1t(M)
1nM

. (A3)
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When M$B, equation (11) can be written as

gA

P(Q)(Y(Q)− a)
1G(M, Q)

1nM
dS(Q)+PV gB

P(Q)Y(Q)
1G(M, Q)

1nM
dS(Q)

−FP gB

P(Q)
1

rv2 R(M, Q) dS(Q)−
Y(M)

2
P(M)=−

1
rv2

1t(M)
1nM

. (A4)

The functional is then directly derived by computing

gA

(A1)q(M)Y(M) dS(M)+gA

(A3)q(M) dS(M)

+gB

(A2)q(M)Y(M) dS(M)+gB

(A4)q(M) dS(M), (A5)

where q is a test function.


